Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.795
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(20): e2321545121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713621

RESUMEN

The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Humanos , Ratones , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Línea Celular Tumoral , Oxígeno Singlete/metabolismo , Porfirinas/farmacología , Porfirinas/química , Unión Proteica , Nanopartículas/química
2.
BMC Ophthalmol ; 24(1): 201, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698363

RESUMEN

BACKGROUND: We aimed to employ Optical Coherence Tomography Angiography (OCTA) to comprehensively assess changes in the optic nerve head (ONH) and macular perfusion before and after the Corneal Collagen Cross-Linking (CCL) procedure in patients with keratoconus. METHODS: A total of 22 keratoconus patient's candidate for CCL procedures were included based on specific criteria, with meticulous exclusion criteria in place to minimize potential confounders. Participants underwent OCTA assessments of the ONH and macula using the Spectralis OCT (Heidelberg) before CCL, as well as at 1- and 3-months post-CCL. MATLAB software was utilized for image analysis. RESULTS: The mean age of the participants was 20.09 ± 6.11, including 59% male, and the mean intraocular pressure (IOP) before the surgery was 13.59 ± 2.85 mmHg. Peripapillary Retinal nerve fiber layer (ppRNFL) thickness and overall retinal thickness remained stable post-CCL. However, significant alterations were observed in macular vessel density, emphasizing regional variations in vascular response. For macular large vessel density (LVD), both superficial and deep vascular complex (SVC and DVC) demonstrated significant differences between before surgery and the 3 months post-surgery follow-up (p < 0.001 and p = 0.002, respectively). Optic nerve head markers demonstrated relative stability, except for changes in avascular complex density, which was 49.2 ± 2.2% before the surgery and decrease to 47.6 ± 1.7% three months after the operation (P-value = 0.005). CONCLUSION: While CCL appears to maintain the integrity of certain ocular structures, alterations in macular perfusion post-CCL suggest potential effects on retinal blood supply. Long-term monitoring is crucial to understand the implications of these changes, particularly in the context of conditions such as diabetes.


Asunto(s)
Colágeno , Reactivos de Enlaces Cruzados , Angiografía con Fluoresceína , Queratocono , Disco Óptico , Vasos Retinianos , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Queratocono/fisiopatología , Queratocono/diagnóstico , Masculino , Femenino , Colágeno/metabolismo , Adulto Joven , Adulto , Angiografía con Fluoresceína/métodos , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/fisiopatología , Disco Óptico/irrigación sanguínea , Adolescente , Estudios Prospectivos , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Mácula Lútea/diagnóstico por imagen , Mácula Lútea/irrigación sanguínea
3.
Acta Neurochir (Wien) ; 166(1): 212, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739282

RESUMEN

PURPOSE: Glioblastoma is a malignant and aggressive brain tumour that, although there have been improvements in the first line treatment, there is still no consensus regarding the best standard of care (SOC) upon its inevitable recurrence. There are novel adjuvant therapies that aim to improve local disease control. Nowadays, the association of intraoperative photodynamic therapy (PDT) immediately after a 5-aminolevulinic acid (5-ALA) fluorescence-guided resection (FGR) in malignant gliomas surgery has emerged as a potential and feasible strategy to increase the extent of safe resection and destroy residual tumour in the surgical cavity borders, respectively. OBJECTIVES: To assess the survival rates and safety of the association of intraoperative PDT with 5-ALA FGR, in comparison with a 5-ALA FGR alone, in patients with recurrent glioblastoma. METHODS: This article describes a matched-pair cohort study with two groups of patients submitted to 5-ALA FGR for recurrent glioblastoma. Group 1 was a prospective series of 11 consecutive cases submitted to 5-ALA FGR plus intraoperative PDT; group 2 was a historical series of 11 consecutive cases submitted to 5-ALA FGR alone. Age, sex, Karnofsky performance scale (KPS), 5-ALA post-resection status, T1-contrast-enhanced extent of resection (EOR), previous and post pathology, IDH (Isocitrate dehydrogenase), Ki67, previous and post treatment, brain magnetic resonance imaging (MRI) controls and surgical complications were documented. RESULTS: The Mantel-Cox test showed a significant difference between the survival rates (p = 0.008) of both groups. 4 postoperative complications occurred (36.6%) in each group. As of the last follow-up (January 2024), 7/11 patients in group 1, and 0/11 patients in group 2 were still alive. 6- and 12-months post-treatment, a survival proportion of 71,59% and 57,27% is expected in group 1, versus 45,45% and 9,09% in group 2, respectively. 6 months post-treatment, a progression free survival (PFS) of 61,36% and 18,18% is expected in group 1 and group 2, respectively. CONCLUSION: The association of PDT immediately after 5-ALA FGR for recurrent malignant glioma seems to be associated with better survival without additional or severe morbidity. Despite the need for larger, randomized series, the proposed treatment is a feasible and safe addition to the reoperation.


Asunto(s)
Ácido Aminolevulínico , Neoplasias Encefálicas , Glioblastoma , Recurrencia Local de Neoplasia , Fotoquimioterapia , Cirugía Asistida por Computador , Humanos , Glioblastoma/cirugía , Glioblastoma/tratamiento farmacológico , Glioblastoma/diagnóstico por imagen , Ácido Aminolevulínico/uso terapéutico , Masculino , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Persona de Mediana Edad , Fotoquimioterapia/métodos , Recurrencia Local de Neoplasia/cirugía , Anciano , Estudios de Cohortes , Cirugía Asistida por Computador/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Adulto , Estudios Prospectivos , Procedimientos Neuroquirúrgicos/métodos
4.
J Photochem Photobiol B ; 255: 112910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663337

RESUMEN

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.


Asunto(s)
Carcinoma Ductal Pancreático , Irinotecán , Minociclina , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Minociclina/farmacología , Minociclina/uso terapéutico , Irinotecán/farmacología , Irinotecán/uso terapéutico , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Inhibidores de Topoisomerasa I/química , Liposomas/química
5.
Jpn J Ophthalmol ; 68(3): 225-232, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38557918

RESUMEN

PURPOSE: We aimed to compare the efficacy and safety of accelerated contact lens-assisted cross-linking (CA-CXL) with Lotrafilcon B and Comfilcon A lenses in keratoconus (KC) patients with thin corneas. STUDY DESIGN: Retrospective, single-center study. MATERIALS AND METHODS: We retrospectively included 51 eyes of 39 KC patients with corneal thickness <400µm after epithelial scraping (Epi-off), who underwent accelerated CA-CXL treatment with Lotrafilcon B (n=20) and Comfilcon A (n=31). Uncorrected and corrected distance visual acuity (UDVA and CDVA), manifest refraction values, corneal topographic data and endothelial cell density were recorded at preoperative and postoperative 1st, 3rd and 6th month controls. RESULTS: CDVA in the Comfilcon A group was higher than CDVA before surgery at 6 months postoperatively (p<0.001). When the two lenses were compared, CDVA was found to be significantly higher in the Lotrafilcon B group in the preoperative, postoperative 1st month and 3rd month values, but there was no significant difference between the postoperative 6th month values (p=0.028, p=0.018, p=0.044, p=0.181, respectively). The maximum keratometry (Kmax) value at the 6th month after surgery in the Comfilcon A group was significantly lower than in the Lotrafilcon B group (p=0,009). There was no significant difference between the endothelial cell density values between the groups (p=0.623, p=0.609, p=0.794, p=0.458, respectively). There was no significant difference between the progression, regression, and stability rates of the two groups (p=0.714). CONCLUSIONS: Accelerated CA-CXL with Lotrafilcon B and Comfilcon A silicone hydrogel lenses is a safe and effective method to stop progression in patients with thin corneas.


Asunto(s)
Colágeno , Topografía de la Córnea , Reactivos de Enlaces Cruzados , Queratocono , Fotoquimioterapia , Fármacos Fotosensibilizantes , Refracción Ocular , Riboflavina , Agudeza Visual , Humanos , Queratocono/diagnóstico , Queratocono/fisiopatología , Queratocono/tratamiento farmacológico , Queratocono/terapia , Queratocono/metabolismo , Femenino , Masculino , Estudios Retrospectivos , Agudeza Visual/fisiología , Fármacos Fotosensibilizantes/uso terapéutico , Adulto , Riboflavina/uso terapéutico , Fotoquimioterapia/métodos , Adulto Joven , Refracción Ocular/fisiología , Colágeno/metabolismo , Resultado del Tratamiento , Córnea/patología , Rayos Ultravioleta , Estudios de Seguimiento , Adolescente , Recuento de Células , Sustancia Propia/metabolismo , Endotelio Corneal/patología , Lentes de Contacto Hidrofílicos , Reticulación Corneal
6.
Curr Treat Options Oncol ; 25(5): 619-627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581550

RESUMEN

OPINION STATEMENT: Skin tumors commonly seen in dermatology are involved in all layers of the skin and appendages. While biopsy of affected skin remains an essential method to confirm diagnosis and to predicate tumor prognosis, it has its limitations. Recently, photodynamic diagnosis (PDD) has demonstrated high sensitivity in detecting affected skin and mucosal tissues, providing valuable guidance for precision surgery to resect skin and mucosal tumors. In this review, we summarized the literatures concerning the applications of PDD in diagnostic process and treatment of skin and mucosal conditions such as actinic keratoses (AK), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), Bowen's disease (BD) and extramammary Paget's disease (EMPD). The findings suggest that PDD holds substantial promise for expanding clinical applications and deserves further research exploration.


Asunto(s)
Fotoquimioterapia , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/etiología , Fotoquimioterapia/métodos , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/terapia , Manejo de la Enfermedad , Fármacos Fotosensibilizantes/uso terapéutico , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/terapia
7.
Indian J Ophthalmol ; 72(5): 712-717, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648433

RESUMEN

PURPOSE: To compare the changes encountered in corneal biomechanics and aberration profile following accelerated corneal collagen cross-linking (CXL) using hypo-osmolar and iso-osmolar riboflavin in corneal thicknesses of <400 and >400 microns, respectively. METHODS: This is a prospective, interventional, comparative study involving 100 eyes of 75 patients with progressive keratoconus. Eyes were divided into two groups based on corneal thickness: group 1 included eyes with a corneal thickness of <400 microns who underwent hypo-osmolar CXL, and group 2 included eyes with a corneal thickness of >400 microns who underwent iso-osmolar CXL. Corneal biomechanical and aberration profiles were evaluated and compared between groups. RESULTS: In group 1, all higher-order aberrations (HOA) except secondary astigmatism significantly decreased from baseline; however, in group 2, only coma and trefoil decreased. The corneal resistance factor and corneal hysteresis significantly improved in both groups, which was significantly greater in group 2 than in group 1. The change in inverse radius, deformation amplitude, and tomographic biomechanical index was significantly improved in group 2 as compared to group 1. CONCLUSION: Improvement in corrected distance visual acuity and decrease in HOA were significantly better in the hypo-osmolar CXL group; however, the improvement in biomechanical strength of the cornea was significantly better in the iso-osmolar group.


Asunto(s)
Colágeno , Córnea , Topografía de la Córnea , Reactivos de Enlaces Cruzados , Queratocono , Fármacos Fotosensibilizantes , Riboflavina , Rayos Ultravioleta , Agudeza Visual , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Fenómenos Biomecánicos , Colágeno/metabolismo , Córnea/diagnóstico por imagen , Córnea/fisiopatología , Córnea/efectos de los fármacos , Sustancia Propia/metabolismo , Sustancia Propia/efectos de los fármacos , Aberración de Frente de Onda Corneal/fisiopatología , Reactivos de Enlaces Cruzados/uso terapéutico , Estudios de Seguimiento , Queratocono/tratamiento farmacológico , Queratocono/fisiopatología , Queratocono/diagnóstico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Estudios Prospectivos , Refracción Ocular/fisiología , Riboflavina/uso terapéutico , Agudeza Visual/fisiología , Niño
8.
Biomaterials ; 308: 122581, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640783

RESUMEN

Cancer stem cells (CSCs) characterized by self-renewal, invasiveness, tumorigenicity and resistance to treatment are regarded as the thorniest issues in refractory tumors. We develop a targeted and hierarchical controlled release nano-therapeutic platform (SEED-NPs) that self-identifies and responds to CSC and non-CSC micro-niches of tumors. In non-CSC micro-niche, reactive oxygen species (ROS) trigger the burst release of the chemotherapeutic drug and photosensitizer to kill tumor cells and reduce tumor volume by combining chemotherapy and photodynamic therapy (PDT). In CSC micro-niche, the preferentially released differentiation drug induces CSC differentiation and transforms CSCs into chemotherapy-sensitive cells. SEED-NPs exhibit an extraordinary capacity for downregulating the stemness of CD44+/CD24- SP (side population) cell population both in vitro and in vivo, and reveal a 4-fold increase of tumor-targeted accumulation. Also, PDT-generated ROS promote the formation of tunneling nanotubes and facilitate the divergent network transport of drugs in deep tumors. Moreover, ROS in turn promotes CSC differentiation and drug release. This positive-feedback-loop strategy enhances the elimination of refractory CSCs. As a result, SEED-NPs achieve excellent therapeutic effects in both 4T1 SP tumor-bearing mice and regular 4T1 tumor-bearing mice without obvious toxicities and eradicate half of mice tumors. SEED-NPs integrate differentiation, chemotherapy and PDT, which proved feasible and valuable, indicating that active targeting and hierarchical release are necessary to enhance antitumor efficacy. These findings provide promising prospects for overcoming barriers in the treatment of CSCs.


Asunto(s)
Células Madre Neoplásicas , Fotoquimioterapia , Especies Reactivas de Oxígeno , Animales , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Fotoquimioterapia/métodos , Ratones , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Femenino , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Microambiente Tumoral/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
9.
Biomater Sci ; 12(10): 2480-2503, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38592730

RESUMEN

Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.


Asunto(s)
Terapia Fototérmica , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Animales , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Inmunoterapia , Fototerapia/métodos
10.
Sci Rep ; 14(1): 9137, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644422

RESUMEN

To investigate the therapeutic potential of photodynamic therapy (PDT) for malignant gliomas arising in unresectable sites, we investigated the effect of tumor tissue damage by interstitial PDT (i-PDT) using talaporfin sodium (TPS) in a mouse glioma model in which C6 glioma cells were implanted subcutaneously. A kinetic study of TPS demonstrated that a dose of 10 mg/kg and 90 min after administration was appropriate dose and timing for i-PDT. Performing i-PDT using a small-diameter plastic optical fiber demonstrated that an irradiation energy density of 100 J/cm2 or higher was required to achieve therapeutic effects over the entire tumor tissue. The tissue damage induced apoptosis in the area close to the light source, whereas vascular effects, such as fibrin thrombus formation occurred in the area slightly distant from the light source. Furthermore, when irradiating at the same energy density, irradiation at a lower power density for a longer period of time was more effective than irradiation at a higher power density for a shorter time. When performing i-PDT, it is important to consider the rate of delivery of the irradiation light into the tumor tissue and to set irradiation conditions that achieve an optimal balance between cytotoxic and vascular effects.


Asunto(s)
Glioma , Láseres de Semiconductores , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Animales , Fotoquimioterapia/métodos , Glioma/tratamiento farmacológico , Glioma/patología , Porfirinas/farmacología , Porfirinas/uso terapéutico , Ratones , Láseres de Semiconductores/uso terapéutico , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Modelos Animales de Enfermedad , Aloinjertos , Apoptosis/efectos de los fármacos , Masculino
11.
Front Immunol ; 15: 1375767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646546

RESUMEN

Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.


Asunto(s)
Inmunoterapia , Nanopartículas , Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Animales , Fármacos Fotosensibilizantes/uso terapéutico , Terapia Combinada , Nanomedicina/métodos
12.
Nat Commun ; 15(1): 2954, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582750

RESUMEN

Single-atom catalysts (SACs) have attracted interest in photodynamic therapy (PDT), while they are normally limited by the side effects on normal tissues and the interference from the Tumor Microenvironment (TME). Here we show a TME-activated in situ synthesis of SACs for efficient tumor-specific water-based PDT. Upon reduction by upregulated GSH in TME, C3N4-Mn SACs are obtained in TME with Mn atomically coordinated into the cavity of C3N4 nanosheets. This in situ synthesis overcomes toxicity from random distribution and catalyst release in healthy tissues. Based on the Ligand-to-Metal charge transfer (LMCT) process, C3N4-Mn SACs exhibit enhanced absorption in the red-light region. Thereby, a water-splitting process is induced by C3N4-Mn SACs under 660 nm irradiation, which initiates the O2-independent generation of highly toxic hydroxyl radical (·OH) for cancer-specific PDT. Subsequently, the ·OH-initiated lipid peroxidation process is demonstrated to devote effective cancer cell death. The in situ synthesized SACs facilitate the precise cancer-specific conversion of inert H2O to reactive ·OH, which facilitates efficient cancer therapy in female mice. This strategy achieves efficient and precise cancer therapy, not only avoiding the side effects on normal tissues but also overcoming tumor hypoxia.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Femenino , Ratones , Animales , Agua , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Hipoxia Tumoral , Microambiente Tumoral , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
13.
J Photochem Photobiol B ; 254: 112903, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608335

RESUMEN

This first-in-its-class proof-of-concept study explored the use of bionanovesicles for the delivery of photosensitizer into cultured cholangiocarcinoma cells and subsequent treatment by photodynamic therapy (PDT). Two types of bionanovesicles were prepared: cellular vesicles (CVs) were fabricated by sonication-mediated nanosizing of cholangiocarcinoma (TFK-1) cells, whereas cell membrane vesicles (CMVs) were produced by TFK-1 cell and organelle membrane isolation and subsequent nanovesicularization by sonication. The bionanovesicles were loaded with zinc phthalocyanine (ZnPC). The CVs and CMVs were characterized (size, polydispersity index, zeta potential, stability, ZnPC encapsulation efficiency, spectral properties) and assayed for tumor (TFK-1) cell association and uptake (flow cytometry, confocal microscopy), intracellular ZnPC distribution (confocal microscopy), dark toxicity (MTS assay), and PDT efficacy (MTS assay). The mean ±â€¯SD diameter, polydispersity index, and zeta potential were 134 ±â€¯1 nm, -16.1 ±â€¯0.9, and 0.220 ±â€¯0.013, respectively, for CVs and 172 ±â€¯3 nm, -16.4 ±â€¯1.1, and 0.167 ±â€¯0.022, respectively, for CMVs. Cold storage for 1 wk and incorporation of ZnPC increased bionanovesicular diameter slightly but size remained within the recommended range for in vivo application (136-220 nm). ZnPC was incorporated into CVs and CMVs at an optimal photosensitizer:lipid molar ratio of 0.006 and 0.01, respectively. Both bionanovesicles were avidly taken up by TFK-1 cells, resulting in homogenous intracellular ZnPC dispersion. Photosensitization of TFK-1 cells did not cause dark toxicity, while illumination at 671 nm (35.3 J/cm2) produced LC50 values of 1.11 µM (CVs) and 0.51 µM (CMVs) at 24 h post-PDT, which is superior to most LC50 values generated in tumor cells photosensitized with liposomal ZnPC. In conclusion, CVs and CMVs constitute a potent photosensitizer platform with no inherent cytotoxicity and high PDT efficacy in vitro.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Compuestos Organometálicos , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Colangiocarcinoma/tratamiento farmacológico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Compuestos Organometálicos/farmacología , Compuestos de Zinc , Línea Celular Tumoral
14.
J Nanobiotechnology ; 22(1): 210, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671474

RESUMEN

Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.


Asunto(s)
Infecciones Bacterianas , Carbono , Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Puntos Cuánticos , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Humanos , Neoplasias/tratamiento farmacológico , Carbono/química , Carbono/uso terapéutico , Carbono/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico , Animales , Especies Reactivas de Oxígeno/metabolismo
15.
Anal Chem ; 96(17): 6674-6682, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38642044

RESUMEN

Photodynamic therapy (PDT) is a significant noninvasive therapeutic modality, but it is often limited in its application due to the restricted tissue penetration depth caused by the wavelength limitations of the light source. Two-photon (TP) fluorescence techniques are capable of having an excitation wavelength in the NIR region by absorbing two NIR photons simultaneously, which offers the potential to achieve higher spatial resolution for deep tissue imaging. Thus, the adoption of TP fluorescence techniques affords several discernible benefits for photodynamic therapy. Organic TP dyes possess a high fluorescence quantum yield. However, the biocompatibility of organic TP dyes is poor, and the method of coating organic TP dyes with silica can effectively overcome the limitations. Herein, based on the TP silica nanoparticles, a functionalized intelligent biogenic missile TP-SiNPs-G4(TMPyP4)-dsDNA(DOX)-Aptamer (TGTDDA) was developed for effective TP bioimaging and synergistic targeted photodynamic therapy and chemotherapy in tumors. First, the Sgc8 aptamer was used to target the PTK7 receptor on the surface of tumor cells. Under two-photon light irradiation, the intelligent biogenic missile can be activated for TP fluorescence imaging to identify tumor cells and the photosensitizer assembled on the nanoparticle surface can be activated for photodynamic therapy. Additionally, this intelligent biogenic missile enables the controlled release of doxorubicin (DOX). The innovative strategy substantially enhances the targeted therapeutic effectiveness of cancer cells. The intelligent biogenic missile provides an effective method for the early detection and treatment of tumors, which has a good application prospect in the real-time high-sensitivity diagnosis and treatment of tumors.


Asunto(s)
Imagen Óptica , Fotoquimioterapia , Fotones , Fármacos Fotosensibilizantes , Humanos , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ratones , Nanopartículas/química , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Dióxido de Silicio/química , Aptámeros de Nucleótidos/química , Colorantes Fluorescentes/química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones Desnudos , Línea Celular Tumoral , Ratones Endogámicos BALB C
16.
ACS Appl Mater Interfaces ; 16(17): 21610-21622, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647446

RESUMEN

The treatment of acute myeloid leukemia (AML) remains unsatisfactory, owing to the absence of efficacious therapy regimens over decades. However, advances in molecular biology, including inhibiting the CXCR4/CXCL12 biological axis, have introduced novel therapeutic options for AML. Additionally, self-stimulated phototherapy can solve the poor light penetration from external sources, and it will overcome the limitation that traditional phototherapy cannot be applied to the treatment of AML. Herein, we designed and manufactured a self-stimulated photodynamic nanoreactor to enhance antileukemia efficacy and suppress leukemia recurrence and metastasis in AML mouse models. To fulfill our design, we utilized the CXCR4/CXCL12 biological axis and biomimetic cell membranes in conjunction with self-stimulated phototherapy. This nanoreactor possesses the capability to migrate into the bone marrow cavity, inhibit AML cells from infiltrating into the visceral organ, significantly enhance the antileukemia effect, and prolong the survival time of leukemic mice. Therefore, this nanoreactor has significant potential for achieving high success rates and low recurrence rates in leukemia treatment.


Asunto(s)
Leucemia Mieloide Aguda , Fotoquimioterapia , Receptores CXCR4 , Animales , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Ratones , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral , Quimiocina CXCL12/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología
17.
ACS Appl Mater Interfaces ; 16(17): 21709-21721, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651381

RESUMEN

Antiangiogenic therapy is an effective way to disrupt nutrient supply and starve tumors, but it is restricted by poor efficacy and negative feedback-induced tumor relapse. In this study, a neuropilin-1 (NRP-1)-targeted nanomedicine (designated as FPPT@Axi) is reported for spatiotemporal tumor suppression by combining photodynamic therapy (PDT) with antiangiogenesis. In brief, FPPT@Axi is prepared by utilizing an NRP-1-targeting chimeric peptide (Fmoc-K(PpIX)-PEG8-TKPRR) to encapsulate the antiangiogenic drug Axitinib (Axi). Importantly, the NRP-1-mediated targeting property enables FPPT@Axi to selectively concentrate at vascular endothelial and breast cancer cells, facilitating the production of reactive oxygen species (ROS) in situ for specific vascular disruption and enhanced cell apoptosis under light stimulation. Moreover, the codelivered Axi can further inhibit vascular endothelial growth factor receptor (VEGFR) to impair the negative feedback of PDT-induced tumor neovascularization. Consequently, FPPT@Axi spatiotemporally restrains the tumor growth through blocking angiogenesis, destroying tumor vessels, and inducing tumor apoptosis. Such an NRP-1-mediated targeting codelivery system sheds light on constructing an appealing candidate with translational potential by using clinically approved PDT and chemotherapy.


Asunto(s)
Inhibidores de la Angiogénesis , Neovascularización Patológica , Neuropilina-1 , Fotoquimioterapia , Neuropilina-1/metabolismo , Humanos , Animales , Ratones , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/química , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Femenino , Axitinib/farmacología , Axitinib/química , Axitinib/uso terapéutico , Nanomedicina , Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Ratones Endogámicos BALB C , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos
18.
J Mater Chem B ; 12(18): 4307-4334, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38595268

RESUMEN

Graphene quantum dots (GQDs) hold great promise for photodynamic and photothermal cancer therapies. Their unique properties, such as exceptional photoluminescence, photothermal conversion efficiency, and surface functionalization capabilities, make them attractive candidates for targeted cancer treatment. GQDs have a high photothermal conversion efficiency, meaning they can efficiently convert light energy into heat, leading to localized hyperthermia in tumors. By targeting the tumor site with laser irradiation, GQD-based nanosystems can induce selective cancer cell destruction while sparing healthy tissues. In photodynamic therapy, light-sensitive compounds known as photosensitizers are activated by light of specific wavelengths, generating reactive oxygen species that induce cancer cell death. GQD-based nanosystems can act as excellent photosensitizers due to their ability to absorb light across a broad spectrum; their nanoscale size allows for deeper tissue penetration, enhancing the therapeutic effect. The combination of photothermal and photodynamic therapies using GQDs holds immense potential in cancer treatment. By integrating GQDs into this combination therapy approach, researchers aim to achieve enhanced therapeutic efficacy through synergistic effects. However, biodistribution and biodegradation of GQDs within the body present a significant hurdle to overcome, as ensuring their effective delivery to the tumor site and stability during treatment is crucial for therapeutic efficacy. In addition, achieving precise targeting specificity of GQDs to cancer cells is a challenging task that requires further exploration. Moreover, improving the photothermal conversion efficiency of GQDs, controlling reactive oxygen species generation for photodynamic therapy, and evaluating their long-term biocompatibility are all areas that demand attention. Scalability and cost-effectiveness of GQD synthesis methods, as well as obtaining regulatory approval for clinical applications, are also hurdles that need to be addressed. Further exploration of GQDs in photothermal and photodynamic cancer therapies holds promise for advancements in targeted drug delivery, personalized medicine approaches, and the development of innovative combination therapies. The purpose of this review is to critically examine the current trends and advancements in the application of GQDs in photothermal and photodynamic cancer therapies, highlighting their potential benefits, advantages, and future perspectives as well as addressing the crucial challenges that need to be overcome for their practical application in targeted cancer therapy.


Asunto(s)
Grafito , Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Terapia Fototérmica , Puntos Cuánticos , Grafito/química , Puntos Cuánticos/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/farmacología
19.
Biomater Adv ; 160: 213859, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642515

RESUMEN

Triple-negative breast cancer (TNBC) is a highly invasive and metastatic subtype of breast cancer that often recurs after surgery. Herein, we developed a cyclodextrin-based tumor-targeted nano delivery system that incorporated the photosensitizer chlorin e6 (Ce6) and the chemotherapeutic agent lonidamine (LND) to form the R6RGD-CMßCD-se-se-Ce6/LND nanoparticles (RCC/LND NPS). This nanosystem could target cancer cells, avoid lysosomal degradation and further localize within the mitochondria. The RCC/LND NPS had pH and redox-responsive to control the release of Ce6 and LND. Consequently, the nanosystem had a synergistic effect by effectively alleviating hypoxia, enhancing the production of cytotoxic reactive oxygen species (ROS) and amplifying the efficacy of photodynamic therapy (PDT). Furthermore, the RCC/LND NPS + light weakened anoikis resistance, disrupted extracellular matrix (ECM), activated both the intrinsic apoptotic pathway (mitochondrial pathway) and extrinsic apoptotic pathway (receptor death pathway) of anoikis. In addition, the nanosystem showed significant anti-TNBC efficacy in vivo. These findings collectively demonstrated that RCC/LND NPS + light enhanced the anticancer effects, induced anoikis and inhibited tumor cell migration and invasion through a synergistic effect of chemotherapy and PDT. Overall, this study highlighted the promising potential of the RCC/LND NPS + light for the treatment of TNBC.


Asunto(s)
Anoicis , Apoptosis , Clorofilidas , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Humanos , Fotoquimioterapia/métodos , Femenino , Porfirinas/farmacología , Porfirinas/uso terapéutico , Animales , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Anoicis/efectos de los fármacos , Nanopartículas/química , Nanopartículas/uso terapéutico , Apoptosis/efectos de los fármacos , Indazoles/farmacología , Indazoles/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones
20.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673726

RESUMEN

Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents. This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents. Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemotherapy. Consequently, the management of bone tumors and bone regeneration poses significant clinical challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal invasiveness and high selectivity. However, key challenges have limited its widespread clinical use. Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or immunotherapies also present avenues for improvement. In this review, we provide an overview of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT), along with current research directions in the context of bone tumors, including (1) target strategies, (2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for photothermal therapy and bone regeneration. We delve into the pros and cons of these combination methods and explore current research focal points. Lastly, we address the challenges and prospects of photothermal combination therapy.


Asunto(s)
Neoplasias Óseas , Rayos Infrarrojos , Terapia Fototérmica , Humanos , Neoplasias Óseas/terapia , Terapia Fototérmica/métodos , Rayos Infrarrojos/uso terapéutico , Animales , Fármacos Fotosensibilizantes/uso terapéutico , Osteosarcoma/terapia , Osteosarcoma/patología , Terapia Combinada/métodos , Inmunoterapia/métodos , Fotoquimioterapia/métodos , Regeneración Ósea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA